Thermal Rearrangement of 4-Iminomethyl-1,2,3-thiadiazoles

Gerrit L'abbé,* Mikaëla Verbeke, Wim Dehaen and Suzanne Toppet
Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Leuven (Heverlee), Belgium

Imines derived from 1,2,3-thiadiazole-4-carbaldehyde 4 rearrange thermally into 1,2,3-triazole-4thiocarbaldehydes 6 which were trapped with anthracene or 2,3-dimethylbutadiene. In two cases, 1,2,3-thiadiazole-4-thiocarbaldehyde 9 was intercepted as the Diels-Alder adduct 11. 5-Phenyl-1,2,3-thiadiazole-4-carbaldehyde 14 reacts with amines to give 4-benzoyl-1,2,3-triazoles 17 via the intermediate 4-thiobenzoyltriazoles 16, whose existence has been demonstrated by NMR. The reactions of 5-tert-butylthio-1,2,3-thiadiazole-4-carbaldehyde 18 with amines yield either 1,2,3-triazole-4-dithio esters 20 or 1,2,3-triazole-4-thioamides 21 . In solution, the dithioesters 20 equilibrate with the imines 19 when the R-substituent is aryl. From the reaction conditions we conclude that the facility of rearrangement of the title compounds depends on the nucleophilicity of the imine nitrogen and on the 5 -substituent in the order $\mathrm{Bu}^{t} \mathrm{~S}>\mathrm{Ph}>\mathrm{H}$.

Recently we reported that 5-chloro-1,2,3-thiadiazole-4-carbaldehyde 1 reacts with amines to give 1,2,3-triazole-4-thiocarboxamides 2 via x-diazo thioketone intermediates. ${ }^{1}$ This reaction is similar to the Cornforth rearrangement of 4 -carbonyl substituted oxazoles, ${ }^{2}$ and to the ring-degenerate rearrangement of 4-iminomethyl substituted $1 \mathrm{H}-1,2,3$-triazoles ${ }^{3}$ which all involve the participation of two side-chain atoms during the rearrangement. In contrast, the classical Dimroth rearrangement of 5-amino substituted thiadiazoles and triazoles involve the exchange of the exocyclic N -atom with the adjacent endocyclic S - or N -atom. ${ }^{4}$ In continuation of our research in this field, we have now investigated the generality of the title thiadiazole-triazole rearrangement by introducing different substituents at the 5-position; i.e. H, Ph and SR. The results are discussed below.

The parent aldehyde 4 was prepared from methylglyoxal 3 by the method of Kobori et al. ${ }^{5}$ and treated with a series of amines in ethanol at room temperature. The products $5 \mathbf{a}-\mathrm{h}$ all had the E-configuration about the $\mathrm{C}=\mathrm{N}$ bond as evidenced by the onebond ${ }^{13} \mathrm{CH}=\mathrm{N}$ coupling constants of $164-167 \mathrm{~Hz}$ which would be larger for the Z-isomers (ca. 177 Hz). ${ }^{6}$ This cis-relationship between the thiadiazole ring and the imine-nitrogen lone pair is a necessary condition for observing any rearrangement to a triazole. ${ }^{7}$ This was found to be the case for the imines $5 a-f$ which rearranged readily in tetrahydrofuran or toluene at $65^{\circ} \mathrm{C}$, and for 5 g which required heating in toluene at $110^{\circ} \mathrm{C}$. In contrast, the imine $\mathbf{5 h}$ remained unchanged in dimethyl sulfoxide at $120^{\circ} \mathrm{C}$ although it also possessed the E configuration (${ }^{1} J 164$). The thermolyses were carried out in the presence of anthracene or 2,3-dimethylbutadiene as traps ${ }^{8}$ for the thioaldehydes 6, resulting in the formation of the DielsAlder adducts 7a, b,g and 8c-f (Scheme 1).

The imines 5a, b furnished the expected products 7a, b with anthracene, but with 2,3-dimethylbutadiene the same thiadiazole derivative 11 was isolated in both cases together with the triazoles 12a, b. This is rationalized in Scheme 2 where the intermediate thioaldehydes $\mathbf{6 a}$, b undergo $\mathbf{a}(2+2)$ -cycloaddition-cycloreversion process with unchanged $\mathbf{5 a}, \mathbf{b}$ to

Scheme 1 Reagents: i, $\mathrm{EtO}_{2} \mathrm{CNHNH}_{2}$; ii, SOCl_{2}; iii, $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{CH}_{2} \mathrm{O}$; iv, $\mathrm{RNH}_{2} ; \mathrm{v}$, anthracene; vi, $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me})-\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}$
give the thioaldehyde 9 and the iminotriazoles $10 a, b$. Compound 9 is trapped with the diene under the reaction conditions to give the thiadiazole derivative 11 , whereas the imines $10 \mathrm{a}, \mathrm{b}$ are hydrolysed during the chromatographic workup procedure.

Differentiation between the triazoles and the thiadiazoles is easily made on the basis of their ${ }^{13} \mathrm{C}$ NMR spectra. Indeed, the triazoles 7, 8 and 12 exhibit characteristic C-4 and C-5 resonances at $\delta 148-150$ and $\delta 118-124$ respectively, whereas those of the thiadiazole 11 occur at lower field (C-4 at δ 164.7, C-5 at $\delta 132.1$), and in the same region as those of the aldehyde 4 (C-4 at $\delta 161.9, \mathrm{C}-5$ at $\delta 140.7$) and the imines 5 (C-4 at $\delta 161-$

Scheme 2
162, C-5 at δ 134-137). The incremental substituent effects for triazoles and thiadiazoles have been discussed recently. ${ }^{9}$
We next investigated the influence of a 5 -phenyl substituent on the ease of rearrangement of thiadiazoles. 5-Phenyl-1,2,3-thiadiazole-4-carbaldehyde 14 was readily obtained from the known 5-phenylthiadiazole 13 by treatment of its 4 -lithio derivative ${ }^{10}$ with N-formylmorpholine in tetrahydrofuran at $-70^{\circ} \mathrm{C}$ (Scheme 3). This method has already been utilized successfully by Olah ${ }^{11}$ and Dondoni ${ }^{12}$ to prepare different aldehydes.

13

16

17a-g

	R		R
a	Me	e	Ph
b	Et	f	$4 \cdot \mathrm{MeOC}_{6} \mathrm{H}_{4}$
c	Pr^{j}	g	$4 \cdot \mathrm{ClC}_{6} \mathrm{H}_{4}$
d	Bu^{ℓ}	h	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Scheme 3 Reagents: i, MeLi; ii, N-formylmorpholine; iii, RNH_{2}; iv, $\mathrm{RNH}_{2} / \mathrm{H}_{2} \mathrm{O}$

Methylamine and ethylamine reacted with compound 14 at room temperature to give products which were characterized as the 4 -benzoyltriazoles $17 \mathbf{a}, \mathbf{b}$ on the basis of their spectral data. Under similar conditions, isopropylamine, tertbutylamine, aniline and p-methoxyaniline provided a mixture

	R		R
a	Me	e	Ph
b	Et	f	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
c	Pr^{j}	g	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
d	Bu^{t}	h	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Scheme 4 Reagents: i, $\mathrm{Me}_{3} \mathrm{C}-\mathrm{SNa}$; ii, RNH_{2}
of the imines $\mathbf{1 5 c}-$ f and ketones $\mathbf{1 7 c} \mathbf{c}$-f, and complete conversion into $\mathbf{1 7 c} \mathbf{c}$ f was achieved in refluxing ethanol. The imine $\mathbf{1 5 g}$, derived from p-chloroaniline, did not rearrange at room temperature but gave the ketone 17 g at $120^{\circ} \mathrm{C}$ in dimethyl sulfoxide solution. In contrast, 3,4-dichloroaniline yielded the imine 15 h which proved to be stable at $100-120^{\circ} \mathrm{C}$. From these results we conclude that the propensity of the imines 15 to rearrange depends on the nucleophilicity of the imine nitrogen.

That the rearranged products have structure 17 instead of 16 is evident from the $\mathrm{C}=0$ stretching absorptions at $\sim 1650 \mathrm{~cm}^{-1}$ in their IR spectra and the typical ketone C signals at $\delta \sim 185$ in their ${ }^{13} \mathrm{C}$ NMR spectra; aromatic thioketones would resonate at $\delta 210-240 .{ }^{13}$ In order to elucidate the mechanism of the conversion $16 \rightarrow 17$, we have followed the reaction of isopropylamine with a slight excess of the aldehyde 14 in deuteriated chloroform by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. The imine 15c was formed first at room temperature, and the thioketone 16 c was obtained after 2 h at $60^{\circ} \mathrm{C}\left(\mathrm{C}=\mathrm{S}\right.$ at $\left.\delta_{\mathrm{c}} 222\right)$. The blue colour of 16 c remained unchanged when the solution was stored at room temperature, even in the presence of $\mathrm{D}_{2} \mathrm{O}$, but disappeared immediately upon addition of isopropylamine. The NMR spectrum then showed resonances of the ketone 17 c . This experiment indicates that hydrolysis of the thioketones 16 is catalysed by the amine present in excess. Full details of the NMR data are given in the Experimental section, but it is appropriate to note here that the phenyl C-ipso resonates at much lower field in the thioketone $16 \mathrm{c}(\delta 145.5)$ than in the ketone $17 \mathrm{c}(\delta 136.7)$ as expected. ${ }^{14}$
Since the chloro aldehyde 1 is readily substituted by alkanethiolates, we have also prepared the tert-butyl derivative 18 and studied its reactions with amines. Methylamine, ethylamine and isopropylamine yielded the triazole-4-thiocarboxamides 21a-c, apparently as a result of rearrangement of the imines 19a-c, followed by nucleophilic substitution of the dithioester function of 20a-c by amine (Scheme 4). The amount of amine used (1 or more equivalents) had no influence on the

Table 1 Equilibrium concentrations (\%) of the imines 19d-h in CDCl_{3} at room temperature.

19 d	19 e	19 f	19 g	19 h
0	7	5	18	50

outcome of the reactions, indicating that aminolysis of the dithioesters 20 is a fast process. The products 21a, \mathbf{b} have already been obtained from compound 1 and amines, ${ }^{1}$ and were further characterized by the triazole resonances ${ }^{9}$ at $\delta 148(\mathrm{C}-4)$ and $\delta 125-129(\mathrm{C}-5)$, and the thioamide resonances ${ }^{15}$ at $\delta 184$ in the ${ }^{13} \mathrm{C}$ NMR spectra.
tert-Butylamine and aromatic amines also reacted with the aldehyde 18 at room temperature, but furnished rose-red coloured products which were identified as the dithioesters $\mathbf{2 0 d}-$ h. These compounds exhibited $\mathrm{C}=\mathrm{S}$ carbon resonances at $\delta 214$ 215 in their NMR spectra. ${ }^{16}$ Furthermore, when freshly prepared chloroform solutions of the aromatic derivatives $\mathbf{2 0 e}$ h were analysed, the NMR spectra indicated the presence of minor amounts of the imines $19 e-h$, whose concentrations increased with time until equilibria positions were reached. The results are summarized in Table 1 and point out that the shift towards the imine is favoured by electron-withdrawing R substituents. This is most pronounced for the dichlorophenyl derivative 20 h which equilibrates with 50% imine $\mathbf{1 9 h}$ after 1 day in deuteriated chloroform treated with alumina. The same equilibrium position was reached in untreated chloroform, but only after several days. In other solvents, such as deuteriated benzene, tetrahydrofuran and acetonitrile, the equilibrium concentration of 19 h is much lower, 30,20 and 27% respectively; hence, no correlation with the solvent polarity was found.

Experimental

M.p.s were determined using a Reichert Thermovar apparatus and are uncorrected. IR spectra were recorded on a PerkinElmer 1720 FT spectrometer, NMR spectra on a Bruker WM250 or AMX- 400 spectrometer, and mass spectra (EI) on a Hewlett Packard 5989A or Kratos MS50 TC (for high resolution) instrument, both operating at $70 \mathrm{eV} . J$ Values are recorded in Hz .

1,2,3-Thiadiazole-4-carbaldehyde 4 was prepared from methylglyoxal in 3 steps by the method of Kobori et al.; ${ }^{5}$ it had m.p. $87^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.37(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $10.6(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 140.7\left(\mathrm{C}-5,{ }^{1} J 195,{ }^{3} J 4.5\right), 161.9\left(\mathrm{C}-4,{ }^{2} J 25.5\right.$ and 6.5) and $183.2\left(\mathrm{CHO},{ }^{1} J 187,{ }^{3} J 1\right)$.

4-[9,10-Dihydro-10,9-(epithiomethano)anthracen-12-yl]-1-methyl-1,2,3-triazole 7a. - To a solution of the aldehyde 4 (0.5 $\mathrm{g}, 4.4 \mathrm{mmol}$) in ethanol ($20 \mathrm{~cm}^{3}$) was added aq. methylamine $(40 \% ; 1.7 \mathrm{~g}, 22 \mathrm{mmol})$ and the mixture was stirred overnight at room temperature. Evaporation of the solvent left the imine $\mathbf{5 a}$ as an impure oil ($0.52 \mathrm{~g}, 93 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1667 \mathrm{~s}(\mathrm{C}=\mathrm{N})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.62(3 \mathrm{H}, \mathrm{d}, \mathrm{Me}, J 1.5), 8.91(1 \mathrm{H}, \mathrm{q}, \mathrm{CH}=\mathrm{N}, J 1.5)$ and $9.04(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 48.4\left(\mathrm{Me},{ }^{1} J 136,{ }^{3} J 12.7\right)$, $134.9\left(\mathrm{C}-5,{ }^{1} J 194,{ }^{3} J 4\right), 153.7\left(\mathrm{C}=\mathrm{N},{ }^{1} J 165.6,{ }^{3} J 10\right.$ and 1$)$ and 161.3 (C-4).

A solution of the imine $5 \mathrm{a}(0.5 \mathrm{~g}, 3.9 \mathrm{mmol})$ and a threefold excess of anthracene (2.1 g) in dry tetrahydrofuran $\left(60 \mathrm{~cm}^{3}\right)$ was heated at $65^{\circ} \mathrm{C}$ for 2 days and then poured into ice-water (200 cm^{3}). The resulting precipitate was collected and chromatographed on silica gel with diethyl ether as the eluent to give the triazole $7 \mathrm{a}\left(0.23 \mathrm{~g}, 21 \%\right.$), m.p. $177^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C , 70.6; $\mathrm{H}, 5.1 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 70.79 ; \mathrm{H}, 4.95 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.83$ and $4.92(2 \mathrm{H}, 2 \mathrm{~d}$, $\mathrm{SCH}-\mathrm{CH}), 5.18(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.49(1 \mathrm{H}, \mathrm{s}$, triazole $5-\mathrm{H})$ and $6.9-$ $7.5(8 \mathrm{H}, 4 \mathrm{~d}+\mathrm{t}+\mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 36.5(\mathrm{Me}), 45.6,45.8$ and
$51.4(\mathrm{CH}-\mathrm{S}-\mathrm{CH}-\mathrm{CH}), 121.6-126.8,138.3,141.4,142.3$ and 143.3 (Ar), 123.9 (triazole C-5) and 149.4 (triazole C-4); $m / z 305$ $\left(\mathrm{M}^{++}, 0.07 \%\right), 178\left(\mathrm{C}_{14} \mathrm{H}_{10}{ }^{-+}, 100\right), 176(12), 58(12)$ and $42(23)$.

1-Ethyl-4-[9,10-dihydro-10,9-(epithiomethano)anthracen-12$y l]-1,2,3$-triazole 7 b .-To a solution of the aldehyde $4(1 \mathrm{~g}, 8.8$ mmol) in ethanol $\left(40 \mathrm{~cm}^{3}\right)$ was added aq. ethylamine ($70 \% ; 2.8$ $\mathrm{g}, 44 \mathrm{mmol}$) and the mixture was stirred overnight at room temperature. The solvent was replaced by chloroform, and the mixture dried $\left(\mathbf{M g S O}_{4}\right)$ and evaporated to give the imine $\mathbf{5 b}$ as an impure oil ($1.09 \mathrm{~g}, 87 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1651 \mathrm{~s}(\mathrm{C}=\mathrm{N})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.28(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 3.7\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right), 8.87(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{N})$ and $9.0(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 15.7$ and $55.8(\mathrm{Et})$, $135.0\left(\mathrm{C}-5,{ }^{1} J 193,{ }^{3} J 4\right), 151.6\left(\mathrm{C}=\mathrm{N},{ }^{1} J 165\right)$ and $161.4\left(\mathrm{C}-4,{ }^{2} J\right.$ 11 and 6).

A solution of the imine $5 \mathbf{b b}(1 \mathrm{~g}, 7.1 \mathrm{mmol})$ and a threefold excess of anthracene $(3.8 \mathrm{~g})$ in dry toluene $\left(100 \mathrm{~cm}^{3}\right)$ was heated at $65^{\circ} \mathrm{C}$ for 24 h . After cooling, the solution was filtered and the filtrate was evaporated. The residue was chromatographed on silica gel with diethyl ether-hexane $(1: 1)$ as the eluent to give triazole $7 \mathrm{~b}\left(0.39 \mathrm{~g}, 17 \%\right.$), m.p. $153^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $71.5 ; \mathrm{H}, 5.4$. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 71.44 ; \mathrm{H}, 5.36 \%$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.33(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.86$ and $4.9(2$ $\mathrm{H}, 2 \mathrm{~d}, \mathrm{SCH}-\mathrm{CH}), 5.19(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.48(1 \mathrm{H}, \mathrm{s}$, triazole $5-\mathrm{H})$ and 6.9-7.5 $(8 \mathrm{H}, 4 \mathrm{~d}+\mathrm{t}+\mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 15.4$ and 45.1 (Et), 45.7, 45.8 and $51.6(\mathrm{CH}-\mathrm{S}-\mathrm{CH}-\mathrm{CH}), 121.7-126.8,138.4$, 141.3, 142.4 and 143.2 (Ar), 122.3 (triazole C-5, ${ }^{1} J 195,{ }^{3} J 4$) and 149.3 (triazole C-4); $m / z 319\left(\mathrm{M}^{\cdot+}, 0.2 \%\right), 178\left(\mathrm{C}_{14} \mathrm{H}_{10}{ }^{\circ+}\right.$, $100)$ and 176 (16).

1-(4-Chlorophenyl)-4-[9,10-dihydro-10,9-(epithiomethano)-anthracen-12-yl]-1,2,3-triazole 7g.-To a solution of the aldehyde $4(1 \mathrm{~g}, 8.8 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was added p-chloroaniline ($1.12 \mathrm{~g}, 8.8 \mathrm{mmol}$) and the whole mixture was stirred at room temperature for 12 h . The precipitated imine 5 g was filtered off $(1.03 \mathrm{~g}, 52 \%)$, m.p. $121^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 48.2 ; \mathrm{H}, 2.7 . \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClN}_{3} \mathrm{~S}$ requires $\mathrm{C}, 48.33 ; \mathrm{H}$, $2.70 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1627 \mathrm{~s}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.28$ and 7.43 ($4 \mathrm{H}, 2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{4}$), $9.12(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and $9.28(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 122.3,129.5,132.9$ and $148.9(\mathrm{Ar}), 136.2\left(\mathrm{C}-5,{ }^{1} J\right.$ $\left.194,{ }^{3} J 4\right), 150.9\left(\mathrm{C}=\mathrm{N},{ }^{1} J 166\right)$ and $161.6\left(\mathrm{C}-4,{ }^{2} J 11\right.$ and 6.5$)$.

A solution of $5 \mathrm{~g}(0.5 \mathrm{~g}, 2.2 \mathrm{mmol})$ and a fivefold excess of anthracene (2 g) in dry toluene $\left(100 \mathrm{~cm}^{3}\right)$ was refluxed for 2 days. After cooling, the solution was filtered and the filtrate was evaporated. The residue was chromatographed on silica gel with diethyl ether-light petroleum (1:3) as the eluent to give triazole $7 \mathrm{~g}(0.14 \mathrm{~g}, 18 \%)$, m.p. $161^{\circ} \mathrm{C}$ (from $\left.\mathrm{Et}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 4.89 and $4.96(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{SCH}-\mathrm{CH}), 5.24(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.88(1 \mathrm{H}, \mathrm{s}$, triazole $5-\mathrm{H}$) and $6.95-7.5(12 \mathrm{H}, 2 \mathrm{~d}+\mathrm{td}+4 \mathrm{~m}$, Ar); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 45.5,45.9$ and $51.4(\mathrm{CH}-\mathrm{S}-\mathrm{CH}-\mathrm{CH}), 121.2$ (triazole C-5, ${ }^{1} J 197,{ }^{3} J 5$), 121.4, 129.8, 134.3 and 135.3 (Ar), 121.9126.9, 138.2, 141.1, 142.3 and 143.2 (Ar) and 150.3 (triazole C-4); $m / z 369\left(\mathrm{M}^{++}, 0 \%\right), 178\left(\mathrm{C}_{14} \mathrm{H}_{10}{ }^{-+}, 100\right), 176$ (16) and 111 $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}^{+}, 11\right)$.

4-(3,6-Dihydro-4,5-dimethyl-2H-thiopyran-2-yl)-1-isopropyl-1,2,3-triazole $\mathbf{8 c}$.-To a solution of the aldehyde $\mathbf{4}(0.5 \mathrm{~g}, 4.4$ $\mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was added isopropylamine $(0.26 \mathrm{~g}$, 4.4 mmol) and the mixture was stirred overnight at room temperature. The solvent was replaced by chloroform, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the imine 5 c as an oil $(0.55 \mathrm{~g}$, $80 \%) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1650 \mathrm{~s}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.3(6 \mathrm{H}, \mathrm{d}, 2$ Me), $3.7(1 \mathrm{H}$, sept, CH$), 8.93(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and $9.08(1 \mathrm{H}, \mathrm{s}$, $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 23.8$ and $61.8\left(\mathrm{Pr}^{\mathrm{i}}\right), 134.9\left(\mathrm{C}-5,{ }^{1} J 193.7,{ }^{3} J 4\right)$, $149.7\left(\mathrm{C}=\mathrm{N},{ }^{1} J 164.5,{ }^{3} J 9\right)$ and $161.6(\mathrm{C}-4)$.

A solution of imine $5 \mathrm{c}(0.5 \mathrm{~g}, 3.2 \mathrm{mmol})$ and a tenfold excess of 2,3-dimethylbutadiene (2.6 g) in dry toluene ($30 \mathrm{~cm}^{3}$) was heated at $65^{\circ} \mathrm{C}$ for 2 days. After removal of the solvent, the
residue was chromatographed on silica gel with diethyl ether as the eluent to give triazole 8c as an oil ($0.29 \mathrm{~g}, 37.5 \%$) (Found: \mathbf{M}^{++}, 237.1296. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}$ requires $M^{\cdot+}$, 237.1300); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.58(6 \mathrm{H}, \mathrm{d}, \mathrm{CHMe} 2), 1.72$ and $1.75(6 \mathrm{H}, 2 \mathrm{br} \mathrm{s}$, $\mathrm{MeC}=\mathrm{CMe})$, $2.62\left(2 \mathrm{H}, \mathrm{brd}, \mathrm{CH}_{2}\right), 2.91$ and $3.38(2 \mathrm{H}, 2 \mathrm{brd}$, $\left.\mathrm{SCH}_{2}\right), 4.22(1 \mathrm{H}, \mathrm{t}, \mathrm{SCH}), 4.8\left(1 \mathrm{H}\right.$, sept. CHMe ${ }_{2}$) and $7.45(1$ H, s, triazole $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.3$ and $20.15(\mathrm{Me}), 22.9$ and $52.9\left(\mathrm{Pr}^{i}\right), 31.8\left(\mathrm{SCH}_{2},{ }^{1} J 136\right), 34.7\left(\mathrm{SCH},{ }^{1} J 144\right), 38.3\left(\mathrm{CH}_{2}\right.$, ${ }^{1} J 127.8$), 118.1 (triazole $\mathrm{C}-5,{ }^{1} J 191$), 123.1 and $126.8(\mathrm{C}=\mathrm{C})$ and 148.9 (triazole C-4).

1-tert-Butyl-4-(3,6-dihydro-4,5-dimethyl-2H-thiopyran-2-yl)-1,2,3-triazole $\mathbf{8 d}$.-To a solution of the aldehyde $4(1 \mathrm{~g}, 8.8$ mmol) in ethanol $\left(40 \mathrm{~cm}^{3}\right)$ was added tert-butylamine ($3.2 \mathrm{~g}, 44$ mmol) and the mixture was stirred at room temperature for 5 h . The solvent was replaced by chloroform, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the imine 5 d as an oil $(1.34 \mathrm{~g}, 90 \%$); $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1645 \mathrm{~s}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 8.9$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and $9.1(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 29.4$ and 58.5 (Bu^{t}), $134.5(\mathrm{C}-5), 147.1(\mathrm{C}=\mathrm{N})$ and $162.6(\mathrm{C}-4)$.
A solution of imine $5 \mathbf{d}(1 \mathrm{~g}, 5.9 \mathrm{mmol})$ and a tenfold excess of 2,3-dimethylbutadiene (4.85 g) in dry toluene ($60 \mathrm{~cm}^{3}$) was heated at $65^{\circ} \mathrm{C}$ for 2 days. After removal of the solvent, the residue was chromatographed on silica gel with diethyl etherhexane ($4: 1$) as the eluent to give triazole $8 \mathrm{~d}(1.04 \mathrm{~g}, 70 \%$), m.p. $68^{\circ} \mathrm{C}$ (from hexane) (Found: C, 62.2; H, 8.4. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 62.11 ; \mathrm{H}, 8.42 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.69\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 1.73$ and $1.76(6 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, \mathrm{MeC}=\mathrm{CMe}), 2.63\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{CH}_{2}\right), 2.91$ and $3.4\left(2 \mathrm{H}, 2 \mathrm{brd}, \mathrm{SCH}_{2}\right), 4.22(1 \mathrm{H}, \mathrm{t}, \mathrm{SCH})$ and $7.51(1 \mathrm{H}, \mathrm{s}$, triazole $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.3$ and $20.1(\mathrm{Me}), 29.9$ and 59.2 (Bu^{1}), $31.9 \mathbf{(S C H}_{2}$), $34.7(\mathrm{SCH}), 38.3\left(\mathbf{C H}_{2}\right), 117.7$ (triazole C5), 123.0 and $126.8(\mathrm{C}=\mathrm{C})$ and 148.2 (triazole C-4).

4-(3,6-Dihydro-4,5-dimethyl-2H-thiopyran-2-yl)-1-phenyl-

1,2,3-triazole 8e.-To a solution of the aldehyde $4(0.5 \mathrm{~g}, 4.4$ mmol) in ethanol ($20 \mathrm{~cm}^{3}$) was added aniline ($0.41 \mathrm{~g}, 4.4 \mathrm{mmol}$) and the mixture was stirred at room temperature for 24 h . After evaporation of the solvent, the residue was crystallized from diethyl ether-hexane to give the imine $5 \mathrm{e}(0.59 \mathrm{~g}, 70 \%$), m.p. $79{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 57.1; H, 3.8. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}$ requires C, $57.12 ; \mathrm{H}, 3.73 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1625 \mathrm{~s}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.3-7.4 ($5 \mathrm{H}, 2 \mathrm{~m}, \mathrm{Ph}), 9.12(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and $9.22(1 \mathrm{H}, \mathrm{s}, 5-$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 121.0,127.2,129.4$ and $150.5(\mathrm{Ph}), 135.9\left(\mathrm{C}-5,{ }^{1} J\right.$ 195, ${ }^{3} J 4.5$), $150.6\left(\mathrm{C}=\mathrm{N},{ }^{1} J 167\right.$) and 161.8 ($\mathrm{C}-4,{ }^{2} J 11$ and 6).
A solution of the imine $5 \mathrm{e}(1 \mathrm{~g}, 5.3 \mathrm{mmol})$ and a tenfold excess of 2,3-dimethylbutadiene (4.3 g) in dry toluene ($50 \mathrm{~cm}^{3}$) was heated at $65^{\circ} \mathrm{C}$ for 2 days. After removal of the solvent, the residue was chromatographed on silica gel with diethyl etherhexane ($5: 1$) as the eluent to give the triazole $8 \mathrm{e}(1.02 \mathrm{~g}, 70 \%$), m.p. $105^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 66.4; H, 6.3. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 66.39 ; \mathrm{H}, 6.31 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.75(6 \mathrm{H}$, br s, $\mathrm{MeC}=\mathrm{CMe})$, $2.69\left(2 \mathrm{H}\right.$, br d, $\left.\mathrm{CH}_{2}\right), 2.95$ and $3.34(2 \mathrm{H}, 2 \mathrm{br} \mathrm{d}$, $\left.\mathrm{SCH}_{2}\right), 4.29(1 \mathrm{H}, \mathrm{t}, \mathrm{SCH}), 7.4-7.8(5 \mathrm{H}, \mathrm{m}+\mathrm{d}, \mathrm{Ph})$ and $7.89(1$ H, s, triazole $5-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 19.4$ and $20.2(\mathrm{Me}), 31.5\left(\mathrm{SCH}_{2}\right)$, 34.4 (SCH), $38.0\left(\mathrm{CH}_{2}\right.$), 119.1 (triazole C-5), 120.5, 128.6, 129.6 and $137.1(\mathrm{Ph}), 123.2$ and $126.6(\mathrm{C}=\mathrm{C})$ and 149.8 (triazole $\mathrm{C}-4$).

4-(3,6-Dihydro-4,5-dimethyl-2H-thiopyran-2-yl)-1-(4-meth-

 oxyphenyl)-1,2,3-triazole 8 ff .-To a solution of the aldehyde 4 ($1 \mathrm{~g}, 8.8 \mathrm{mmol}$) in ethanol ($20 \mathrm{~cm}^{3}$) was added p-methoxyaniline $(1.08 \mathrm{~g}, 8.8 \mathrm{mmol})$ and the mixture was allowed to react at room temperature for 12 h . Crystalline needles of the imine 5 f were collected ($1.11 \mathrm{~g}, 58 \%$), m.p. $93{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 54.7 ; $\mathrm{H}, 4.3 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OS}$ requires $\left.\mathrm{C}, 54.78 ; \mathrm{H}, 4.14 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1628 \mathrm{~s}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.9(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.98$ and $7.35(4 \mathrm{H}, 2 \mathrm{~d}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 9.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and $9.20(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $55.5(\mathrm{OMe}), 114.6,122.5,143.3$ and 159.3 (Ar), 135.2 (C-5, ${ }^{1} J$ 194.2, $\left.{ }^{3} \mathrm{~J} 4.5\right)$, $148.2\left(\mathrm{C}=\mathrm{N},{ }^{1} \mathrm{~J} 165.9\right)$ and 162.2 (C-4).A solution of the imine $\mathbf{5 f}(0.5 \mathrm{~g}, 2.3 \mathrm{mmol})$ and a tenfold excess of 2,3 -dimethylbutadiene (1.9 g) in dry toluene ($30 \mathrm{~cm}^{3}$) was heated at $65^{\circ} \mathrm{C}$ for 2 days. After removal of the solvent, the residue was chromatographed on silica gel with diethyl ether as the eluent to give the triazole $8 \mathrm{f}\left(0.47 \mathrm{~g}, 68 \%\right.$), m.p. $109^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 63.9 ; \mathrm{H}, 6.2 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{SO}$ requires C , 63.76 ; $\mathrm{H}, 6.35 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.73(6 \mathrm{H}$, br s, $\mathrm{MeC=CMe}), 2.66$ ($2 \mathrm{H}, \mathrm{brd}, \mathrm{CH}_{2}$), 2.95 and 3.35 ($2 \mathrm{H}, 2 \mathrm{brd}, \mathrm{SCH}_{2}$), $3.82(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.28(1 \mathrm{H}, \mathrm{t}, \mathrm{SCH}), 7.0$ and $7.6\left(4 \mathrm{H}, 2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $7.8(1$ H , s, triazole $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.4$ and $20.3(\mathrm{Me}), 31.5\left(\mathrm{SCH}_{2}\right)$, $34.4(\mathrm{SCH}), 38.1\left(\mathrm{CH}_{2}\right)$, $55.6(\mathrm{OMe})$, 114.7, 122.1, 130.6 and $159.8(\mathrm{Ar}), 119.3$ (triazole $\mathrm{C}-5$), 123.1 and $126.7(\mathrm{C}=\mathrm{C})$ and 149.5 (triazole C-4).

4-(3,4-Dichlorophenyl)iminomethyl-1,2,3-thiadiazole 5h.-To a solution of the aldehyde $\mathbf{4}(1 \mathrm{~g}, 8.8 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was added 3,4 -dichloroaniline ($1.43 \mathrm{~g}, 8.8 \mathrm{mmol}$) and the mixture was allowed to react at room temperature for 12 h . The precipitated imine 5 h was then filtered off ($1.32 \mathrm{~g}, 58 \%$), m.p. $127^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 42.0; H, 2.0. $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 41.88 ; \mathrm{H}, 1.95 \%$); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1623 \mathrm{~s}(\mathrm{C}=\mathrm{N})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.15,7.41$ and $7.50\left(3 \mathrm{H}, \mathrm{dd}+2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 9.1(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}=\mathrm{N})$ and $9.25(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 120.5$, 123.1 , 131.1 $(\times 2)$, 133.3 and 149.9 (Ar), $136.8\left(\mathrm{C}-5,{ }^{1} J 196\right), 151.9\left(\mathrm{C}=\mathrm{N},{ }^{1} J\right.$ 164) and 161.3 (C-5).

Note: This imine remained unchanged when heated in dimethyl sulfoxide at $120^{\circ} \mathrm{C}$ for 24 h .

4-(3,6-Dihydro-4,5-dimethyl-2H-thiopyran-2-yl)-1,2,3-thiadiazole 11.-A solution of the imine $5 \mathrm{a}(0.5 \mathrm{~g}, 3.9 \mathrm{mmol})$ and a tenfold excess of 2,3-dimethylbutadiene ($3.3 \mathrm{~g}, 39 \mathrm{mmol}$) in dry tetrahydrofuran ($30 \mathrm{~cm}^{3}$) was heated at $65^{\circ} \mathrm{C}$ for 2 days. The reaction mixture was poured into ice-water ($100 \mathrm{~cm}^{3}$) and extracted with chloroform. The combined extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The resulting oil was chromatographed on silica gel with diethyl ether and ethyl acetate as the eluents to give triazole ${ }^{3} 12 \mathrm{a}(0.07 \mathrm{~g}, 16 \%)$ and thiadiazole $11(0.32 \mathrm{~g}, 39 \%)$, m.p. $63^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: $\mathrm{C}, 50.7$; $\mathrm{H}, 5.7 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires C, $\left.50.91 ; \mathrm{H}, 5.70 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.75 and $1.78(6 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, \mathrm{MeC}=\mathrm{CMe}), 2.75\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right)$, 2.98 and $3.38\left(2 \mathrm{H}, 2 \mathrm{br} \mathrm{d}, \mathrm{SCH}_{2}\right), 4.7(1 \mathrm{H}, \mathrm{t}, \mathrm{SCH})$ and 8.39 $(1 \mathrm{H}, \mathrm{s}$, thiadiazole $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.4$ and $20.2(\mathrm{Me}), 31.2$ $\left(\mathrm{SCH}_{2},{ }^{1} J 138\right) 36.3\left(\mathrm{SCH},{ }^{1} J 142\right), 38.3\left(\mathrm{CH}_{2},{ }^{1} J 128\right), 123.4$ and $126.4(\mathrm{C}=\mathrm{C}$), 132.1 (thiadiazole $\mathrm{C}-5$) and 164.7 (thiadiazole $\mathrm{C}-4$).
Note: When the imine 5b was heated with 2,3-dimethylbutadiene under similar conditions in toluene at $65^{\circ} \mathrm{C}$, the known ${ }^{3}$ triazole 12b (20%) and thiadiazole $11(36 \%)$ were obtained.

5-Phenyl-1,2,3-thiadiazole-4-carbaldehyde 14.-To a stirred solution of 5 -phenyl-1,2,3-thiadiazole ${ }^{17}(5.0 \mathrm{~g}, 30.9 \mathrm{mmol})$ in tetrahydrofuran ($75 \mathrm{~cm}^{3}$), cooled at $-70^{\circ} \mathrm{C}$ under nitrogen was added slowly a $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of methyllithium in diethyl ether ($19.4 \mathrm{~cm}^{3}, 31 \mathrm{mmol}$). This was followed after 1 h by N-formylmorpholine ($3.55 \mathrm{~g}, 30.9 \mathrm{mmol}$) dissolved in dry tetrahydrofuran ($10 \mathrm{~cm}^{3}$), and the solution was stirred at $-70^{\circ} \mathrm{C}$ for 1 h ; it was then kept at room temperature for a further 12 h . The reaction mixture was poured into aq. hydrochloric acid ($4 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 50 \mathrm{~cm}^{3}$) and the aqueous layer extracted with diethyl ether. The combined organic portions were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude product 14. This was purified by column chromatography on silica gel with ethyl acetate-hexane (1:1) as the eluent, and then crystallized from diethyl ether ($4.1 \mathrm{~g}, 70 \%$), m.p. $54^{\circ} \mathrm{C}$ (Found: C, 56.8; H, 3.2. $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{OS}$ requires C, $56.83 ; \mathrm{H}, 3.18 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1705 \mathrm{~s}$ and $1680 \mathrm{~s}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45-7.6(5 \mathrm{H}, 2 \mathrm{~m}, \mathrm{Ph})$ and $10.5(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) \quad 125.2,129.1,130.0$ and $131.5(\mathrm{Ph}), 154.2$ (C-4, ${ }^{2} J 26$), 162.9 (C-5), 183.2 (CHO, ${ }^{1} J 187$); m/z $190\left(\mathrm{M}^{+}\right.$, $5 \%), 162(23)$ and $134\left(\mathrm{M}^{++}-\mathrm{N}_{2}-\mathrm{CO}, 100\right)$.

4-Benzoyl-1-methyl-1,2,3-triazole 17a.-To a solution of the aldehyde $14(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ in ethanol ($20 \mathrm{~cm}^{3}$) was added aq. methylamine $(40 \% ; 1.02 \mathrm{~g}, 13.2 \mathrm{mmol})$ and the mixture was stirred at room temperature for 24 h . After removal of the solvent, the residue was chromatographed on silica gel with dichloromethane-ethyl acetate ($9: 1$) as the eluent to give triazole $17 \mathrm{a}\left(0.2 \mathrm{~g}, 42 \%\right.$), m.p. $111.5^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: $\mathrm{C}, 64.1$; $\mathrm{H}, 4.75 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ requires C, $\left.64.16 ; \mathrm{H}, 4.85 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3138 \mathrm{~m}$ and $1653 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 7.49, 7.59 and $8.38(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph})$ and $8.24(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 36.9(\mathrm{Me}), 129.3\left(\mathrm{C}-5,{ }^{1} J 197,{ }^{3} J 3\right)$, 128.4, 130.5, 133.3 and $136.6(\mathrm{Ph}), 148.2\left(\mathrm{C}-4,{ }^{2} J 9\right)$ and $185.7(\mathrm{CO}) ; m / z 187$ $\left(\mathbf{M}^{+}, 40 \%\right), 159\left(\mathbf{M}^{+}-\mathrm{N}_{2}\right.$ or $\left.\mathrm{CO}, 25\right), 158\left(\mathbf{M}^{+}+\mathrm{MeN}\right.$, 41), $131\left(\mathrm{M}^{+}-\mathrm{N}_{2}-\mathrm{CO}, 33\right), 130\left(\mathrm{PhCOC} \equiv \mathrm{CH}^{+}, 31\right), 118$ (54), 116 (32), 105 ($\mathrm{PhCO}^{+}, 42$), $90(26), 89(36), 82\left(\mathrm{M}^{+}-\right.$ $\mathrm{PhCO}, 21)$ and $77\left(\mathrm{Ph}^{+}, 100\right)$.

4-Benzoyl-1-ethyl-1,2,3-triazole 17b.-To a solution of the aldehyde $14(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ in ethanol ($20 \mathrm{~cm}^{3}$) was added aq. ethylamine ($70 \% ; 0.85 \mathrm{~g}, 13.2 \mathrm{mmol}$) and the mixture was stirred at room temperature for 24 h . After removal of the solvent, the residue was chromatographed on silica gel with dichloromethane-ethyl acetate (9:1) as the eluent to give unchanged starting material $14(0.25 \mathrm{~g})$ and the triazole 17 b $\left(0.23 \mathrm{~g}, 42 \%\right.$), m.p. $56^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 65.6 ; \mathrm{H}, 5.6$. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ requires C, $\left.65.66 ; \mathrm{H}, 5.51 \%\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3137 m and $1644 \mathrm{~s}(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.65(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.5(2 \mathrm{H}, \mathrm{q}$, CH_{2}), $7.5,7.65$ and $8.48(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph})$ and $8.3(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 15.4$ and $45.6(\mathrm{Et}), 127.7\left(\mathrm{C}-5,{ }^{1} J 196,{ }^{3} \mathrm{~J} 2.5\right)$, 128.4, 130.6, 133.25 and $136.6(\mathrm{Ph})$, 148.1 (C-4) and $185.8(\mathrm{CO})$; m / z $201\left(\mathbf{M}^{+}, 25 \%\right), 173\left(\mathbf{M}^{+}-\mathrm{N}_{2}\right.$ or $\left.\mathrm{CO}, 20\right), 172\left(\mathrm{M}^{+}+\mathrm{Et}\right.$, 23), 158 ($\mathrm{M}^{+}-\mathrm{EtN}, 23$), 145 (20), 130 ($\mathrm{PhCOC} \equiv \mathrm{CH}^{+}, 21$), 116 (40), 105 ($\mathrm{PhCO}^{+}, 76$), 104 (48), 96 ($\mathrm{M}^{++}-\mathrm{PhCO}, 13$), 90 (29), 89 (31) and $77\left(\mathrm{Ph}^{+}, 100\right)$.

4-Benzoyl-1-isopropyl-1,2,3-triazole 17c.-A solution of the aldehyde $14(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ and a fivefold excess of isopropylamine ($0.78 \mathrm{~g}, 13.2 \mathrm{mmol}$) in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was refluxed for 16 h . After removal of the solvent, the residue was chromatographed on silica gel with dichloromethane-ethyl acetate $(20: 1)$ as the eluent to give the triazole $17 \mathrm{c}(0.34 \mathrm{~g}, 62 \%)$, m.p. $65^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{3} \mathrm{O}$) (Found: C, 67.1; H, 6.1. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 66.96 ; \mathrm{H}, 6.09 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3159 \mathrm{~m}, 1656 \mathrm{~s}$, $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.65(6 \mathrm{H}, \mathrm{d}, 2 \mathrm{Me}), 4.9(1 \mathrm{H}, \mathrm{sept}, \mathrm{CH}), 7.5$, 7.6 and $8.45(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph})$ and $8.3(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 23.0 and 53.5 ($\left.\mathrm{Pr}^{\mathrm{I}}\right)$, 126.0 (C-5), 128.4, 130.6, 133.2 and 136.6 (Ph), 147.9 (C-4) and $185.9(\mathrm{CO})$; $m / z 215\left(\mathrm{M}^{+}, 100 \%\right)$, 187 $\left(\mathrm{M}^{+}+-\mathrm{N}_{2}\right.$ or CO, 14), 186 (13), $145(63), 144\left(\mathrm{~m} / \mathrm{z} 187-\mathrm{C}_{3} \mathrm{H}_{7}\right.$, 27), 117 (19), $116\left(\mathrm{M}^{+}-\mathrm{N}_{2}-\mathrm{CO}-\mathrm{C}_{3} \mathrm{H}_{7}, 43\right)$ and 105 ($\mathrm{PhCO}^{+}, 86$).

Note: When the reaction of isopropylamine with a slight excess of the aldehyde 14 in CDCl_{3}, treated with basic alumina, was followed by NMR spectroscopy, the imine 15c was observed as major product after 2 h at room temperature. The mixture when heated at $60^{\circ} \mathrm{C}$ for 2 h furnished a blue solution composed essentially of the imine 15 c and thioketone 16 c in a ratio of $1: 3$. This solution decolorized upon addition of ispropylamine and provided NMR signals characteristic of the triazole 17c.

Imine 15c: $\delta_{\mathrm{H}} 1.31(6 \mathrm{H}, \mathrm{d}, 2 \mathrm{Me}), 3.6(1 \mathrm{H}$, sept, CH$), 7.51(5$ $\mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and $8.57(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}) ; \delta_{\mathrm{c}} 23.8$ and $62.4\left(\mathrm{Pr}^{\mathrm{i}}\right)$, 126.6, 129.0, 129.7 and $130.3(\mathrm{Ph}), 148.5\left(\mathrm{C}=\mathrm{N},{ }^{1} J 163.8,{ }^{3} J 9\right), 153.9$ (C-4, ${ }^{2} J 14$) and 156.3 (C-5).

Thioketone 16c: $\delta_{\mathbf{H}} 1.64(6 \mathrm{H}, \mathrm{d}, 2 \mathrm{Me}), 4.85(1 \mathrm{H}$, sept, CH$)$, 7.4-7.5 and $8.0(5 \mathrm{H}, \mathrm{m}+\mathrm{d}, \mathrm{Ph})$ and $8.26(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}} 22.8$ and $53.4\left(\mathrm{Pr}^{\mathrm{I}}\right), 126.5\left(\mathrm{C}-5,{ }^{1} J\right.$ 197), 128.0, 129.8, 132.3 and 145.5 (Ph), $155.0(\mathrm{C}-4)$ and $222.4(\mathrm{C}=\mathrm{S})$.

4-Benzoyl-1-(tert-butyl)-1,2,3-triazole 17d.-A solution of the aldehyde $14(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ and a fivefold excess of tertbutylamine ($0.95 \mathrm{~g}, 13.2 \mathrm{mmol}$) in ethanol $\left(20 \mathrm{~cm}^{3}\right.$) was refluxed for 4 h . After removal of the solvent, the residue was chromatographed on silica gel with dichloromethane-ethyl acetate $(9: 1)$ as the eluent to give triazole $17 \mathrm{~d}(0.35 \mathrm{~g}, 58 \%)$, m.p. $104^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 68.2; H, 6.45. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 68.10 ; \mathrm{H}, 6.59 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3159 \mathrm{~m}, 2994 \mathrm{~m}$, and $1653 \mathrm{~s}(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.75\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 7.5,7.6$ and 8.47 ($5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph}$) and $8.36(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 29.9$ and 60.2 (Bu^{t}), 125.8 (C-5), 128.3, 130.7, 133.2 and 136.7 (Ph), 147.5 (C-4) and $186.0(\mathrm{CO}) ; m / z 229\left(\mathrm{M}^{+}, 23 \%\right)$, $201\left(\mathrm{M}^{+}+\mathrm{N}_{2}\right.$ or $\mathrm{CO}, 11), 200(10), 145$ (53), $144\left(\mathrm{~m} / \mathrm{z} 201-\mathrm{C}_{4} \mathrm{H}_{9}, 13\right), 117$ (15), $116\left(\mathrm{M}^{+}+\mathrm{N}_{2}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{H}_{9}, 13\right), 105\left(\mathrm{PhCO}^{+}, 61\right), 77$ $\left(\mathrm{Ph}^{+}, 30\right)$ and $57\left(\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 100\right)$.

4-Benzoyl-1-phenyl-1,2,3-triazole 17e.-A solution of the aldehyde $14(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ and aniline $(0.28 \mathrm{~g}, 3.1 \mathrm{mmol})$ in diethyl ether ($30 \mathrm{~cm}^{3}$) was refluxed for 24 h . After removal of the solvent, the residue was chromatographed on silica gel with dichloromethane-ethyl acetate ($9: 1$) as the eluent to give the triazole $17 \mathrm{e}\left(0.41 \mathrm{~g}, 62 \%\right.$), m.p. $131^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$, lit., ${ }^{18}$ $125^{\circ} \mathrm{C}$) (Found: C, $72.3 ; \mathrm{H}, 4.5 . \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ requires C, 72.28 : $\mathrm{H}, 4.45 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3134 \mathrm{~m}$ and $1641 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.49-7.67, 7.82 and $8.5(10 \mathrm{H}, \mathrm{m}+2 \mathrm{~d}, 2 \mathrm{Ph})$ and $8.71(1 \mathrm{H}, \mathrm{s}$, $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 120.8,128.5,129.6,130.0,130.7,133.5,136.4$ and $136.5(\mathrm{Ph}), 126.4\left(\mathrm{C}-5,{ }^{1} J 198.3\right)$, $148.6\left(\mathrm{C}-4,{ }^{2} J 8.5\right)$ and $185.6(\mathrm{CO}) ; m / z 249\left(\mathrm{M}^{++}, 2 \%\right), 221\left(\mathrm{M}^{++}-\mathrm{N}_{2}\right.$ or $\left.\mathrm{CO}, 9\right), 220$ (10), $193\left(\mathrm{M}^{+}-\mathrm{N}_{2}-\mathrm{CO}, 14\right), 180(18), 105\left(\mathrm{PhCO}^{+}, 61\right)$ and $77\left(\mathrm{Ph}^{+}, 100\right)$.

4-Benzoyl-1-(4-methoxyphenyl)-1,2,3-triazole 17f.-A solution of the aldehyde $14(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ and p-methoxyaniline ($0.32 \mathrm{~g}, 2.6 \mathrm{mmol}$) in ethanol ($20 \mathrm{~cm}^{3}$) was refluxed for 24 h . After removal of the solvent, the residue was chromatographed on silica gel with dichloromethane-ethyl acetate (20:1) as the eluent to give $17 \mathrm{f}\left(0.43 \mathrm{~g}, 58 \%\right.$), m.p. $153{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 68.7; H, 4.8. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $68.81 ; \mathrm{H}$, $4.69 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3140 \mathrm{~m}$ and $1636 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $3.9(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.06$ and $7.71\left(4 \mathrm{H}, 2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.55,7.64$ and $8.49(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph})$ and $8.63(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 115.0$, 122.4, 129.7 and 160.4 (Ar), 126.4 (C-5), 128.5, 130.7, 133.4 and $136.5(\mathrm{Ph}), 148.4(\mathrm{C}-4)$ and $185.6(\mathrm{CO}) ; m / z 279\left(\mathrm{M}^{+}, 5 \%\right)$, 251 (M^{++}- N_{2} or CO, 26), $236(\mathrm{~m} / \mathrm{z} 251-\mathrm{Me}, 11), 208\left(\mathrm{M}^{++}-\right.$ $\left.\mathrm{N}_{2}-\mathrm{CO}, 12\right), 174,(14)$ and $105\left(\mathrm{PhCO}^{+}, 100\right)$.

4-Benzoyl-1-(4-chlorophenyl)-1,2,3-triazole 17g.-A solution of the aldehyde $14(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ and p-chloroaniline $(0.33 \mathrm{~g}$, 2.6 mmol) in ethanol ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 24 h . The solvent was then evaporated and the residue crystallized from diethyl ether to give $15 \mathrm{~g}(0.6 \mathrm{~g}, 77 \%)$, m.p. $10{ }^{\circ} \mathrm{C} ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1615 \mathrm{~s}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.2$ and $7.35(4$ $\mathrm{H}, 2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{4}$), $7.5-7.6(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $8.74(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 122.4,126.4,129.2,129.3,129.9,130.7,132.6$ and $149.4(\mathrm{Ar}), 150.1\left(\mathrm{C}=\mathrm{N},{ }^{1} J 165\right), 153.8\left(\mathrm{C}-4,{ }^{2} J 13\right)$ and 158.3 (C-5).

A solution of $\mathbf{1 5 g}(0.6 \mathrm{~g}, 2 \mathrm{mmol})$ in dimethyl sulfoxide (20 cm^{3}) was heated at $120^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was poured into ice-water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with chloroform. The extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The resulting crude product was crystallized from dichloromethane-diethyl ether to give the triazole $17 \mathrm{~g}(0.1 \mathrm{~g}$, 20%), m.p. $221^{\circ} \mathrm{C}$ (Found: C, 63.35; H, 3.65. $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}$ requires $\mathrm{C}, 63.50 ; \mathrm{H}, 3.55 \%)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3130 \mathrm{~m}$ and 1642 s $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.62,7.73$ and $8.27(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph})$, 7.72 and $8.08\left(4 \mathrm{H}, 2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $9.61(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 122.5,128.6,129.9,130.0,133.5,133.8,134.9$ and 136.5(Ar), 128.2 (C-5), 147.2 (C-4) and 185.1 (CO); $m / z 283$
$\left(\mathrm{M}^{\cdot+}, 9 \%\right), 255\left(\mathrm{M}^{++}-\mathrm{N}_{2}\right.$ or $\left.\mathrm{CO}, 24\right), 227\left(\mathrm{M}^{++}-\mathrm{N}_{2}-\mathrm{CO}\right.$, 19), 214 (28) and $105\left(\mathrm{PhCO}^{+}, 100\right)$.

4-(3,4-Dichlorophenyl)iminomethyl-5-phenyl-1,2,3-thiadiazole 15 h .-A solution of the aldehyde $14(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ and 3,4-dichloroaniline ($0.42 \mathrm{~g}, 2.6 \mathrm{mmol}$) in ethanol ($20 \mathrm{~cm}^{3}$) was allowed to react at room temperature for 24 h . After evaporation of the solvent, the crude product was crystallized from chloroform-diethyl ether to give $15 \mathrm{~h}(0.45 \mathrm{~g}, 50 \%$), m.p. $98^{\circ} \mathrm{C}$ (Found: C, 53.8; H, 2.8. $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{~S}$ requires C, 53.91; $\mathrm{H}, 2.71 \%) ; \nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1627 \mathrm{~m}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.1-7.5(3$ $\left.\mathrm{H}, 2 \mathrm{~d}+\mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 7.5-7.65(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph})$ and $8.75(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{N}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 120.8,122.8,126.3,129.3,130.0,130.7$, 130.9, 133.1 and 150.4 (Ar), 151.2 (C=N), 153.5 (C-4) and 158.9 (C-5).
Note: This compound remained unchanged when heated in toluene for 2 days.

5-tert-Butylthio-1,2,3-thiadiazole-4-carbaldehyde 18.-To a solution of the aldehyde $1(0.5 \mathrm{~g}, 3.4 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was added sodium 1,1 -dimethylethanethiolate $(0.42 \mathrm{~g}, 3.7$ mmol) and the mixture was refluxed under a nitrogen atmosphere for 1 h . The reaction mixture was then poured into water and extracted with chloroform. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue chromatographed on silica gel with diethyl ether-light petroleum $(1: 3)$ as the eluent to give compound $18(0.32 \mathrm{~g}, 47 \%)$, m.p. $59^{\circ} \mathrm{C}$ (from hexane) (Found: C, 41.5; H, 4.9. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}_{2}$ requires C, $41.56 ; \mathrm{H}$, $4.98 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1685 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.6(9 \mathrm{H}, \mathrm{s}$, Bu^{t}) and $10.58(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 29.6$ and $49.4\left(\mathrm{Bu}^{\mathrm{t}}\right)$, 155.9 (C-4), 160.6 (C-5) and 183.7 (C=O); m/z 202 ($\mathrm{M}^{+}, 1 \%$) and $57\left(\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 100\right)$.
tert-Butyl 1-tert-Butyl-1,2,3-triazole-4-carbodithioate 20d.A solution of the aldehyde $18(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ and tertbutylamine ($0.9 \mathrm{~g}, 12.5 \mathrm{mmol}$) in ethanol ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h . After removal of the solvent, the residue was chromatographed on silica gel with diethyl etherhexane ($1: 3$) as the eluent to give the triazole 20d as rose-red crystals ($0.45 \mathrm{~g}, 72 \%$), m.p. $147^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $51.5 ; \mathrm{H}, 7.4 . \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}_{2}$ requires C, $51.33 ; \mathrm{H}, 7.44 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.69$ and $1.71\left(18 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{Bu}^{\mathrm{t}}\right)$ and $8.18(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 28.6,29.8,51.5$ and $60.1\left(2 \mathrm{Bu}^{1}\right), 122.1(\mathrm{C}-5), 154.1$ (C-4) and 215.5 (C=S); m/z $257\left(\mathrm{M}^{+}, 3 \%\right.$), 201 ($\mathrm{M}^{++}-$ $\left.\mathrm{CH}_{2}=\mathrm{CMe}_{2}, 25\right), 145\left(\mathbf{M}^{+}-2 \mathrm{CH}_{2}=\mathrm{CMe}_{2}, 64\right), 117\left(\mathbf{M}^{+}-\right.$ $\left.2 \mathrm{CH}_{2}=\mathrm{CMe}_{2}-\mathrm{N}_{2}, 11\right), 90(11)$ and $57\left(\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 100\right)$.
tert-Butyl 1-Phenyl-1,2,3-triazole-4-carbodithioate 20e.-A solution of aldehyde $18(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ and aniline $(0.26 \mathrm{~g}, 2.8$ $\mathrm{mmol})$ in ethanol ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h . Chromatographic purification on silica gel with diethyl ether-hexane ($1: 3$) as the eluent gave the triazole $\mathbf{2 0 e}$ as rosered crystals ($0.3 \mathrm{~g}, 43 \%$), m.p. $101^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $56.6 ; \mathrm{H}, 5.5 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 56.29 ; \mathrm{H}, 5.45 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.73\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 7.4-7.6$ and $7.77(5 \mathrm{H}, \mathrm{m}+\mathrm{d}, \mathrm{Ph})$ and $8.54(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 28.5$ and $51.9\left(\mathrm{Bu}^{t}\right)$, 120.7, 129.3, 129.8 and $136.4(\mathrm{Ph}), 122.5\left(\mathrm{C}-5,{ }^{1} J 200\right), 155.0\left(\mathrm{C}-4,{ }^{2} J\right.$ 8) and 214.4 (C=S); $m / z 277\left(\mathrm{M}^{+}, 3 \%\right), 221\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{2}=\mathrm{CMe}_{2}, 34\right), \quad 220\left(\mathrm{M}^{++}-\mathrm{Bu}^{\mathbf{1}}, 12\right), 193 \quad\left(\mathrm{M}^{+}+\right.$ $\mathrm{CH}_{2}=\mathrm{CMe}_{2}-\mathrm{N}_{2}, 26$), $192\left(\mathrm{M}^{+}+\mathrm{Bu}^{\mathbf{t}}-\mathrm{N}_{2}, 20\right), 160(\mathrm{~m} / \mathrm{z}$ $192-\mathrm{S}, 15), 129(15), 104(55), 77\left(\mathrm{Ph}^{+}, 77\right)$ and $57\left(\mathrm{C}_{4} \mathrm{H}_{9}^{+}\right.$, 100).

Note: In CDCl_{3} solution, the triazole 20e equilibrates with 7% thiadiazole 19e; $\delta_{\mathrm{H}} 1.59\left(\mathrm{~s}, \mathrm{Bu}^{t}\right)$ and $9.08(\mathrm{~s}, \mathrm{CH}=\mathrm{N})$.
tert-Butyl 1-(4-Methoxyphenyl)-1,2,3-triazole-4-carbodithioate $\mathbf{2 0 f}$.-A solution of the aldehyde $\mathbf{1 8}(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ and p-methoxyaniline $(0.34 \mathrm{~g}, 2.8 \mathrm{mmol})$ ir ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was
stirred at room temperature for 12 h . Chromatographic purification on silica gel with diethyl ether-hexane ($1: 3$) as the eluent gave the triazole 20 f as rose-red crystals $(0.32 \mathrm{~g}, 40 \%)$, m.p. $114^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $54.7 ; \mathrm{H}, 5.5$. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}$ requires $\mathrm{C}, 54.70 ; \mathrm{H}, 5.57 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.73(9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.02$ and $7.65\left(4 \mathrm{H}, 2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $8.45(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 28.6$ and $51.8\left(\mathrm{Bu}^{1}\right)$, 55.6 (OMe), 114.8, 122.3, 129.7 and 160.2 (Ar), 122.6 (C-5), 154.9 (C-4) and $214.5(\mathrm{C}=\mathrm{S}) ; m / z 307\left(\mathrm{M}^{++}, 8 \%\right), 251\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{2}=\mathrm{CMe}_{2}, 7$), $223\left(\mathrm{M}^{+}-\mathrm{CH}_{2}=\mathrm{CMe}_{2}-\mathrm{N}_{2}, 78\right), 222\left(\mathrm{M}^{+}\right.$ $-\mathrm{Bu}^{t}-\mathrm{N}_{2}, 30$), 208 (12), 190 ($\mathrm{m} / \mathrm{z} 222-\mathrm{S}, 15$), 159 (m / z $190-\mathrm{OMe}, 23$), 134 (72), 107 (22), 92 (22), 77 (36) and 57 $\left(\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 100\right)$.

Note: In CDCl_{3} solution, the triazole 20 equilibrates with 5% thiadiazole 19f; $\delta_{\mathrm{H}} 1.57\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right), 6.95$ and $7.35\left(2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and 9.08 ($\mathrm{s}, \mathrm{CH}=\mathrm{N}$).
tert-Butyl 1-(4-Chlorophenyl)-1,2,3-triazole-4-carbodithioate $\mathbf{2 0 g}$.-A solution of the aldehyde $18(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ and p chloroaniline ($0.36 \mathrm{~g}, 2.8 \mathrm{mmol}$) in ethanol ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h . Chromatographic purification on silica gel with diethyl ether-hexane (1:3) as the eluent gave the triazole 20 g as rose-red crystals ($0.42 \mathrm{~g}, 56 \%$), m.p. $134^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 49.8; H, 4.4. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{~S}_{2}$ requires C, $50.07 ; \mathrm{H}, 4.53 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.72\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 7.5$ and $7.7(4 \mathrm{H}$, $\left.2 \mathrm{~d}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $8.51(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 28.5$ and 52.0 (Bu^{1}), 121.8, 130.0, 134.8 and 135.2 (Ar), 122.3 (C-5), 155.1 (C-4) and 214.1 ($\mathrm{C}=\mathrm{S}$); m/z 311 ($\mathrm{M}^{+}, 1 \%$), 255 ($\mathrm{M}^{+}-$ $\left.\mathrm{CH}_{2}=\mathrm{CMe}_{2}, 7\right), 227\left(\mathrm{M}^{+}-\mathrm{CH}_{2}=\mathrm{CMe}_{2}-\mathrm{N}_{2}, 13\right), 138$ (18), 111 (23), 75 (21) and $57\left(\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 100\right)$.
Note: In CDCl_{3} solution, the triazole $\mathbf{2 0 g}$ equilibrates with 18% thiadiazole 19 g after $24 \mathrm{~h} ; \delta_{\mathrm{H}} 1.59\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right), 7.25$ and $7.4(2 \mathrm{~d}$, $\mathrm{C}_{6} \mathrm{H}_{4}$) and $9.06(\mathrm{~s}, \mathrm{CH}=\mathrm{N}) ; \delta_{\mathrm{c}} 30$ and $49.2\left(\mathrm{Bu}^{\mathrm{t}}\right)$, 122.4, 129.3, 132.4 and 149.4 (Ar), 151.4 (C=N), 153.7 and 155.4 (C-4 and C-5).
tert-Butyl 1-(3,4-Dichlorophenyl)-1,2,3-triazole-4-carbodithioate $\mathbf{2 0 h}$.-A solution of the aldehyde $18(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ and 3,4-dichloroaniline ($0.45 \mathrm{~g}, 2.8 \mathrm{mmol}$) in ethanol ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h . Chromatographic purification on silica gel with diethyl ether-hexane ($1: 3$) as the eluent gave the triazole $\mathbf{2 0 h}$ as rose-red crystals $(0.46 \mathrm{~g}$, 52%), m.p. $148^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $45.0 ; \mathrm{H}, 3.9$. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{~S}_{2}$ requires C, $45.09 ; \mathrm{H}, 3.78 \%$); $\delta_{\mathrm{H}} 1.72(9 \mathrm{H}, \mathrm{s}$, Bu^{3}), $7.63,7.64$ and 7.94 ($3 \mathrm{H}, 2 \mathrm{~d}+\mathrm{dd}, \mathrm{Ar}$) and $8.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 5); $\delta_{\mathrm{C}} 28.5$ and 52.1 (Bu^{1}), 119.5, 122.4, 131.6, 133.6, 134.2 and 135.3 (Ar), 122.2 (C-5, ${ }^{1 J} 195$), 155.2 (C-4) and 213.8 (C=S); m / z $345\left(\mathrm{M}^{+}, 1 \%\right), 289\left(\mathrm{M}^{+}+\mathrm{CH}_{2}=\mathrm{CMe}_{2}, 9\right), 261\left(\mathrm{M}^{+}{ }^{+}-\right.$ $\mathrm{CH}_{2}=\mathrm{CMe}_{2}-\mathrm{N}_{2}, 12$), $172(12), 145\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}{ }^{+}, 13\right), 109$ (11) and $57\left(\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 100\right)$.

Note: In CDCl_{3} solution, the triazole 20h equilibrates with 50% thiadiazole 19 h after $24 \mathrm{~h} ; \delta_{\mathrm{H}} 1.6\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right), 7.16,7.41$ and 7.48 ($3 \mathrm{~d}, \mathrm{Ar}$) and $9.05(\mathrm{~s}, \mathrm{CH}=\mathrm{N}) ; \delta_{\mathrm{c}} 30.1$ and $49.4\left(\mathrm{Bu}^{1}\right)$, 120.5, 123.1, 130.4, 130.9, 133.1 and 150.5 (Ar), $152.5\left(\mathrm{C}=\mathrm{N},{ }^{1} J 165\right)$, 154.6 and 155.0 (C-4 and C-5).

N,1-Dimethyl-1,2,3-triazole-4-thiocarboxamide 21a.-To a solution of the aldehyde $18(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was added aq. methylamine ($40 \% ; 0.97 \mathrm{~g}, 12.5 \mathrm{mmol}$) and the mixture was stirred at room temperature. After 1 day, the precipitated triazole 21a was filtered off and crystallized from ethanol ($0.2 \mathrm{~g}, 52 \%$), m.p. $213^{\circ} \mathrm{C}$ (lit., ${ }^{1} 210^{\circ} \mathrm{C}$) (for spectral data, see ref. 1).

N,1-Diethyl-1,2,3-triazole-4-thiocarboxamide 21b.-To a solution of the aldehyde $18(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was added aq. ethylamine ($70 \% ; 0.8 \mathrm{~g}, 12.5 \mathrm{mmol}$) and the mixture was stirred at room temperature for 24 h . After
removal of the solvent, the residue was chromatographed on silica gel with diethyl ether-hexane ($1: 1$) as the eluent to give the triazole 21 b ($0.25 \mathrm{~g}, 56 \%$), m.p. $96^{\circ} \mathrm{C}$ (lit., ${ }^{1} 97^{\circ} \mathrm{C}$) (for spectral data, see ref. 1).

N,1-Diisopropyl-1,2,3-triazole-4-thiocarboxamide 21c.-A solution of the aldehyde $18(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ and isopropylamine $(0.74 \mathrm{~g}, 12.5 \mathrm{mmol})$ was stirred overnight at room temperature. After removal of the solvent, the residue was chromatographed on silica gel with diethyl ether-hexane ($1: 1$) as the eluent to give triazole $21 \mathrm{c}\left(0.43 \mathrm{~g}, 80 \%\right.$), m.p. $77^{\circ} \mathrm{C}$ (from hexane) (Found: C, $51.15 ; \mathrm{H}, 7.5 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$ requires $\mathrm{C}, 50.92 ; \mathrm{H}, 7.60 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37$ and $1.6(12 \mathrm{H}, 2 \mathrm{~d}, 4 \mathrm{Me}), 4.83$ and $4.84(2 \mathrm{H}$, sept + octet, 2 CH), $8.24(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $8.8(1 \mathrm{H}, \mathrm{br}$ s, NH); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 21.5,22.9,46.4$ and $53.6\left(2 \mathrm{Pr}^{\mathrm{i}}\right), 125.2(\mathrm{C}-5)$, 148.1 (C-4) and $183.1(\mathrm{C}=\mathrm{S}) ; m / z 212\left(\mathrm{M}^{+}, 16 \%\right)$ and $58\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}^{+}\right.$, 100).

Acknowledgements

This work was carried out with fellowships from the IWONL (M. Verbeke) and NFWO (W. Dehaen). Financial support from the FKFO (Belgium) and the 'Ministerie voor Wetenschapsbeleid' is gratefully acknowledged.

References

1 G. L'abbé, E. Vanderstede, W. Dehaen, P. Delbeke and S. Toppet, J. Chem. Soc., Perkin Trans. 1, 1991, 607.

2 J. W. Cornforth in The Chemistry of Penicillin, Princeton University Press, Princeton N.J., 1949, pp. 688-730.
3 P. H. Olesen, F. E. Nielsen, E. B. Pedersen and J. Becher, J. Heterocycl. Chem., 1984, 21, 1603; G. L'abbé and A. Vandendriessche, J. Heterocycl. Chem., 1989, 26, 701; G. L’abbé, G. Van Essche, P. Delbeke and S. Toppet, Bull. Soc. Chim. Belg., 1990, 99,

833; G. L'abbé and M. Bruynseels, J. Chem. Soc., Perkin Trans. I, 1990, 1492; G. L'abbé, M. Bruynseels, P. Delbeke and S. Toppet, J. Heterocycl. Chem., 1990, 27, 2021; G. L'abbé and G. Van Essche, Bull. Soc. Chim. Belg., 1991, 100, 289.
4 Reviews: G. L'abbé, J. Heterocycl. Chem., 1984, 21, 627; G. L'abbé, Bull. Soc. Chim. Belg., 1990, 99, 281.
5 T. Kobori, M. Fujita, T. Hiyama and K. Kondo, Synthesis, 1992, 95.
6 J. Bjørgo, D. R. Boyd, C. G. Watson, W. B. Jennings and D. M. Jerina, J. Chem. Soc., Perkin Trans. 2, 1974, 1081; V. M. S. Gil and W. von Philipsborn, Magn. Reson. Chem., 1989, 27, 409.

7 L. A. Burke, J. Elguero, G. Leroy and M. Sana, J. Am. Chem. Soc., 1976, 98, 1685.
8 J. E. Baldwin and R. C. G. Lopez, Tetrahedron, 1983, 39, 1487.
9 G. L’abbé, P. Delbeke, G. Van Essche, I. Luyten, K. Vercauteren and S. Toppet, Bull. Soc. Chim. Belg., 1990, 99, 1007; G. L'abbé, P. Delbeke, W. Dehaen, L. Bastin and S. Toppet, Bull. Soc. Chim. Belg., 1991, 100, 623.
10 E. W. Thomas and D. C. Zimmermann, Synthesis, 1985, 945.
11 G. A. Olah, L. Ohannesian and M. Arvanaghi, J. Org. Chem., 1984, 49, 3856.
12 A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici and P. Pedrini, Synthesis, 1987, 998.
13 B. S. Pedersen, S. Scheibye, N. H. Nilsson and S. O. Lawesson, Bull. Soc. Chim. Belg., 1978, 87, 223.
14 D. F. Ewing, Org. Magn. Reson., 1979, 12, 449.
15 S. Scheibye, B. S. Pedersen and S. O. Lawesson, Bull. Soc. Chim. Belg., 1978, 87, 229; A. R. Katritzky, S. Sobiak, and C. M. Marson, Magn. Reson. Chem., 1988, 26, 665.
16 B. S. Pedersen, S. Scheibye, K. Clausen and S. O. Lawesson, Bull. Soc. Chim. Belg., 1978, 87, 293.
17 H. Meier, G. Trickes, E. Laping and U. Merkle, Chem. Ber., 1980, 113, 183.
18 W. Borsche, H. Hahn and M. Wagner-Roemmich, Liebigs Ann. Chem., 1943, 554, 15.

Paper 3/02495D
Received 30th April 1993
Accepted 7th May 1993

